| Name |      |
|------|------|
|      | Hour |

# Lab #3: Elephant Toothpaste

# Scientific Concept:

To investigate one of the types of reactions.



## Purpose:

This activity is a type of dissociation reaction, in which Hydrogen Peroxide is broken down into Oxygen and Water, with the use of a catalyst.

## Background Information:

You might remember Mom treating your scraped knee or a cut with hydrogen peroxide.  $H_2O_2$  is the scientific name for hydrogen peroxide, which is made up of two hydrogen atoms and two oxygen atoms.  $H_2O_2$  looks like ordinary water  $(H_2O)$ , but the addition of that extra oxygen atom turns the molecule into an extremely powerful oxidizer. The secret ingredient is actually a **catalyst** (something that speeds up a chemical reaction by lowering the activation energy needed for the reaction to run, and in this case, it's the decomposition of hydrogen peroxide). When hydrogen peroxide  $(H_2O_2)$  decomposes, it breaks down to form water  $(H_2O)$  and oxygen  $(O_2)$ . The soap bubbles that erupt from the cylinder are actually filled with oxygen. As the reaction takes place, you'll also feel a temperature change in the reaction. This shows that the reaction is **exothermic**, meaning that it gives off heat.

The breakdown of Hydrogen Peroxide into Water and Oxygen follows the reaction:

2H<sub>2</sub>O<sub>2</sub>→2H<sub>2</sub>O+O<sub>2</sub>

#### Materials:

- -Erlenmeyer Flask (or other flask with a neck)
- -100 mL Hydrogen Peroxide Solution (1% in a classroom, higher concentrations produce larger reactions)
- -25 mL warm Water
- -Dish Soap
- -1 package quick-rise yeast
- -Food Coloring (Everything is Better in Color)
- -Pie Container to catch mess.

| Name |      |
|------|------|
|      | Hour |

#### Procedure:

Preparing the Reaction:

In the Erlenmeyer flask, combine 100 mL Hydrogen Peroxide with dish soap (add a fair amount, then swirl to mix) and food coloring. Place this in the pie tin.

In a separate container, heat up the water. Add the yeast into the water and stir.

Add the yeast and water solution (catalyst) into the Hydrogen Peroxide Solution and observe.

### Data/Observations:

Draw a "Before", "During" and "After" Diagram to show what you observed during the various stages of the reaction.

| Before | During | After |
|--------|--------|-------|
|        |        |       |
|        |        |       |
|        |        |       |
|        |        |       |
|        |        |       |

Feel the sides of the pie container or the solution in the pie container. What do you feel?

Results: What does your data mean?

# Discussion Questions:

- 1. Reactions that give off energy in the form of heat are called exothermic. Do your observations in the question above support that this reaction is exothermic? Why?
- 2. What was the yeast and hot water used for? What does a catalyst do?
- 3. In this reaction, oxygen molecules were breaking away from the hydrogen peroxide. When you observed the "toothpaste" leave the container, why do you think that was?